
SNAKEDEV

All of Data Engineering in

Three Hours

Operational Analytics Club

Summer Community Days

© 2022 Snakedev 1

About Me

Pete Fein

Trainer / Consultant / Coach

Independent consultant for 12 years.

20 years in Python & Data.

Writing a book: Principles of Data

Engineering (Pearson).

CTO for search-engine startup.

I’m old.

© 2022 Snakedev 2

https://snake.dev/

Overview

Bird's eye view of all of data engineering.

Learn how it all fits together.

A few practical tidbits.

Something for everyone.

Focus on analytics, not data science.

Your head will explode - stay cool!

Got a question? Use Q&A (moderated).

© 2022 Snakedev 3

Summary

Overview of Data Engineering

Components of the Data Stack

Data Operations

Data Architecture

Q&A after

© 2022 Snakedev 4

Business Use Cases

Sales & marketing

Transportation logistics

Large system monitoring

Fraud detection

Telephone

Large scale billing

Pure sciences, physics, & chemistry

Mobile apps

IOT

Optimize decisions!

© 2022 Snakedev 5

Kinds of Data

Log files

Sensor data

Images

Numeric

Short strings

Long unformatted texts

Web analytics & Customer Data Platforms (CDPs)

GPS & satellite imagery

APIs as a data source

© 2022 Snakedev 6

Related Fields & Jobs

Data Scientists

Machine Learning Engineers

Data Analysts

Analytics Engineers

ML Ops

Data Ops

© 2022 Snakedev 7

Related Fields & Jobs

Data Scientists

Machine Learning Engineers

Data Analysts

Analytics Engineers

ML Ops

Data Ops

© 2022 Snakedev 8

What do Data

Engineers do all day?

A day in the life of a data engineer ...

Write SQL on Snowflake.

Deploy Jupyter notebooks.

Build Spark pipelines.

Author Airflow workflows.

Build Grafana dashboards.

Go to meetings.

© 2022 Snakedev 9

Core Concepts

Data systems are derived systems.

Analytics, not transactions.

Big data, medium data, really big data, high velocity.

Reports, analytics, predictions.

Everything has a time dimension.

Aggregates v. searches

Batch v. streaming.

© 2022 Snakedev 10

My Approach

Bring software engineering best practices to the data space

© 2022 Snakedev 11

Goals of Software Engineering

Verifiable: Provably correct. "Is it doing what it's supposed to?"

Reliable: Operate smoothly and handle problems gracefully.

Reproducible: Re-run code with consistent results.

Maintainable: Upgradable as external software environment changes.

Extensible: Add new features in the future.

Scalable: Grow to more data and developers.

Reusable: Use code beyond its original purpose.

Cost Effective: Minimize overhead and operate efficiently.

Recommended book: Practices of the Python Pro

© 2022 Snakedev 12

https://thepythonpro.com/

Data Engineering Enables Self Serve

Level Profile Language UX

Level 0 Sales team, CEO None Dashboard, PDF

Level 1 Data Analyst Excel BI User

Level 2 Analytics Engineer SQL, YAML BI Developer

Level 3 Data Scientist Pandas Jupyter Notebook

Level 4 Data Engineer Python Flask

See: ADAS for self-driving cars.

© 2022 Snakedev 13

https://en.wikipedia.org/wiki/Advanced_driver-assistance_system

Poll

What level of self serve are you?

1. Level 0: Dashboards, reports

2. Level 1: Excel, BI user

3. Level 2: SQL, YAML, BI creator

4. Level 3: Pandas, Jupyter Notebook

5. Level 4: Python, Flask

© 2022 Snakedev 14

Batch

Processing

Data processed in

discrete chunks.

Runs are sequential.

Like laundry!

© 2022 Snakedev 15

Streaming

Continuous flow of data.

Continuous ingest is common (change data capture).

Streaming analytics is hard.

You don't need this.

Example: Amazon Kinesis, Kafka, Spark streaming

Real time: A definition

"If there's a human in the loop, it's not real time." - Pete Fein

© 2022 Snakedev 16

Build with Open Source

Free (as in speech).

Free (as in beer)!

Transparency enables understanding and debugging.

Add your own features.

Community support.

Hosted open source is great (SaaS).

No vendor lock-in or shutdowns

You can still end up stuck with abandonware though.

© 2022 Snakedev 17

BREAK
© 2022 Snakedev 18

Data Source

(Google

Analytics)

Ingest

(AWS DMS)

Data Lake

(S3)

Data

Warehouse

(Redshift)

BI (Tableau)

Pipelines

(Spark)

Reverse

ETL

Data Stack

Acquisition

Ingest

Data lakes

Data

warehouses

Data pipelines

Outputs

Reverse ETL

Orchestration

© 2022 Snakedev 19

Data Source

(Google

Analytics)

Ingest

(AWS DMS)

Data Lake

(S3)

Data

Warehouse

(Redshift)

BI (Tableau)

Pipelines

(Spark)

Reverse

ETL

Acquisition

Turning external events into data.

CDP: Segment, Snowplow,

Honeypot.io.

Web analytics: Google Analytics.

Server logs & metrics: Fluentd,

Datadog, statsd.

Web scraping & crawling.

Byproduct of transactional systems.

Everything else - Bespoke Python.

Sometimes data is just handed to

you.

© 2022 Snakedev 20

https://snowplowanalytics.com/
http://honeypot.io/
https://analytics.google.com/analytics/web/
https://www.fluentd.org/
https://www.datadoghq.com/
https://github.com/statsd/statsd

Data Source

(Google

Analytics)

Ingest

(AWS DMS)

Data Lake

(S3)

Data

Warehouse

(Redshift)

BI (Tableau)

Pipelines

(Spark)

Reverse

ETL

Ingest (ETL)

Get data into platform.

(EL) in ETL or ELT.

Connectors move data from source to

destination.

Raw data with minimal cleanup.

Absolutely essential

Rebuild in case of errors

Supports changes in future

Use native loaders when possible.

Examples: Load CSV files on S3 into

Redshift

Tools: Fivetran, Snowpipe, Meltano© 2022 Snakedev 21

Data Source

(Google

Analytics)

Ingest

(AWS DMS)

Data Lake

(S3)

Data

Warehouse

(Redshift)

BI (Tableau)

Pipelines

(Spark)

Reverse

ETL

Data Lakes

A puddle of unstructured data.

Landing zone for incoming raw

data.

Original source of truth for

rebuilding.

Source & destination for

processing pipelines.

Scratch space.

Example: CSV files on S3

© 2022 Snakedev 22

Data Source

(Google

Analytics)

Ingest

(AWS DMS)

Data Lake

(S3)

Data

Warehouse

(Redshift)

BI (Tableau)

Pipelines

(Spark)

Reverse

ETL

Data Warehouses

Workhorse of data platform.

SQL-driven transformations.

Transform layer for

cleanup/normalization & analytics.

Storage layer for most BI &

dashboards.

dbt: Templated SQL enables

modularity and reusability. A game

changer.

Examples: AWS Redshift, Google

BigQuery, Snowflake

© 2022 Snakedev 23

Transform Data with dbt

SQL without dbt:

select

order_id,

sum(case when payment_method = 'bank_transfer' then amount end) as bank_transfer_amount,

sum(case when payment_method = 'credit_card' then amount end) as credit_card_amount,

sum(case when payment_method = 'gift_card' then amount end) as gift_card_amount,

sum(amount) as total_amount

from raw_payments

group by 1

SQL with dbt: Use a 'for' loop in models for repeated statements:

select

order_id,

{% for payment_method in ["bank_transfer", "credit_card", "gift_card"] %}

sum(case when payment_method = '{{payment_method}}' then amount end) as {{payment_method}}_amount,

{% endfor %}

sum(amount) as total_amount

from {{ ref('raw_payments') }}

group by 1

© 2022 Snakedev 24

Data Source

(Google

Analytics)

Ingest

(AWS DMS)

Data Lake

(S3)

Data

Warehouse

(Redshift)

BI (Tableau)

Pipelines

(Spark)

Reverse

ETL

Data Pipelines

Catch-all for non-SQL processing.

Python scripts, dataframe APIs.

Data lake is typicaly used for storage.

More complex data processing.

Where Machine Learning happens.

Model inference & training.

Frequently a result of productionizing

of a Jupyter Notebook.

Examples: Spark, pandas, scikit-learn, R

© 2022 Snakedev 25

Data Source

(Google

Analytics)

Ingest

(AWS DMS)

Data Lake

(S3)

Data

Warehouse

(Redshift)

BI (Tableau)

Pipelines

(Spark)

Reverse

ETL

Outputs

Human-usable results of a data

platform

Static reports: PDF, Excel

Dashboards

Business Intelligence: interactive

& exploratory

Exports: CSV & JSON

Machine learning models

Metrics store

Examples: Tableau, Power BI,

Grafana, Apache Superset

© 2022 Snakedev 26

https://grafana.com/
https://superset.apache.org/

Data Source

(Google

Analytics)

Ingest

(AWS DMS)

Data Lake

(S3)

Data

Warehouse

(Redshift)

BI (Tableau)

Pipelines

(Spark)

Reverse

ETL

Reverse ETL

Move beyond analytics to

operationalize data.

Close the loop.

Examples:

Feed hot leads back to

Salesforce.

Ad targeting.

This is hard!

Solutions: Census, Grouparoo

(defunct), hand-rolled Python

© 2022 Snakedev 27

Data Source

(Google

Analytics)

Ingest

(AWS DMS)

Data Lake

(S3)

Data

Warehouse

(Redshift)

BI (Tableau)

Pipelines

(Spark)

Reverse

ETL

Orchestration

How does anything happen?

The arrows in a data

diagram.

Drives action in the system.

Recipe for baking a data

cake.

Events that initiate jobs:

passage of time, arrival of

new data, manual runs.

Avoid: Cron jobs, mess of

lambdas, step functions.

Examples: Apache Airflow,

Astronomer, Prefect, Dagster© 2022 Snakedev 28

http://airflow.apache.org/
https://www.astronomer.io/
https://www.prefect.io/
https://dagster.io/

Poll

How do you run your data jobs?

1. cron with scripts

2. By hand

3. Step functions and Lambdas

4. Airflow

5. Prefect

6. Other

© 2022 Snakedev 29

a

d

e

b

c

What’s a DAG?

Directed Acyclic Graph (DAG).

Core organizational structure in data

systems.

Defines how data moves & the

sequence of operations performed.

Nodes & edges connected in a single

graph without cycles (loops).

Examples: Supply Chain, dbt models, pip

© 2022 Snakedev 30

CSV

© 2022 Snakedev 31

Design Principles

Rivers and refineries.

Do the expensive things

once.

Data is immutable and

immortal.

Match queries to storage.

© 2022 Snakedev 32

BREAK
© 2022 Snakedev 33

Data Platform in Practice

Quality & observability

Testing

Documentation

Governance

Debugging & optimization

Operations

© 2022 Snakedev 34

Quality & Observability

Bad data is toxic.

Quality: Predefined rules for correctness.

Observability: Detecting outliers and weird stuff without judgements.

Solution: checks after every processing step.

Data service-level agreements (SLAs) for accuracy and timeliness.

Example: Great Expectations, dbt-expectations, re_data

© 2022 Snakedev 35

https://greatexpectations.io/
https://calogica.com/assets/dbt-expectations.pdf
https://www.getre.io/

Testing

Ensure correctness when code changes.

Unit testing is hard.

Complex stacks.

Large datasets.

No right answer.

Fixtures: Presaved datasets for tests in CI/CD.

Use data-diff to compare databases.

© 2022 Snakedev 36

https://github.com/datafold/data-diff

Poll

What is dbt-test used for?

1. Testing

2. Quality

3. Observability

© 2022 Snakedev 37

Documentation

Beyond data dictionaries.

Catalogs enable discoverability.

Lineage, a DAG to figure out where

the information came from.

Sarbanes-Oxley accountability.

Plain language and ML

explainability.

Communicate data status in

dashboards/BI.

© 2022 Snakedev 38

Governance

Who can see which rows and which columns.

Role-based access control.

Users (∞ → 1) Groups

Permissions (∞ → 1) Roles

Roles GRANTed to Groups

Permafrost: YAML-based permissions for Snowflake

© 2022 Snakedev 39

https://en.wikipedia.org/wiki/Role-based_access_control
https://github.com/Permafrost

Debugging & Optimization

Debugging is hard.

Benchmarking, cost estimation, capacity planning.

When optimizing, be a scientist!

© 2022 Snakedev 40

Operations: DevOps Not ClickOps!

ClickOps: Devops by clicking around in AWS console.

Error-prone and not reproducible.

No support for multiple environments.

"What's running in prod?"

Solution: Automate Everything

Everything must be automated.

All code and config lives in Git.

Deploy with CI/CD on code pushes.

Tools: Terraform, GitHub Actions, dbt Cloud

© 2022 Snakedev 41

Poll

How do you deploy/run your code?

1. Manually on cloud

2. On a laptop

3. dbt cloud

4. CI/CD

© 2022 Snakedev 42

Dependency Pinning

Reproducible installs.

requirements.txt

No ! Yes!

Tensorflow Tensorflow==2.1.1

Pandas Pandas==17.1

pytest pytest==7.1.2

© 2022 Snakedev 43

BREAK
© 2022 Snakedev 44

Data Architecture

Layouts

The SQL deception

Consistent data

Modern modelling

Warehouses compared

© 2022 Snakedev 45

Layout: How to organize data

You should have one.

Put all data into a single bucket.

Terminology in flux.

Raw: Raw data.

Core: Normalized & cleaned.

Analysis: Derived data.

finance/ marketing/

 raw/ raw/

 core/ core/

 analysis/ analysis/

© 2022 Snakedev 46

OLAP v. OLTP

OLAP (warehouses) OLTP (relational)

No transactions Transactional

Few writes, huge reads Many writes and reads

Columnar oriented Row oriented

Few users Many users

Internal External

Long running Many short queries

Queries/BI Web & Mobile Apps

Do not use data warehouse to drive public-facing apps!

© 2022 Snakedev 47

Row v. Column

Match format to query

types.

Maybe use both.

Row (CSV, PostgreSQL)

1,Alice,F,38,2,Bob,M,42,3,Charlie,M,12

Column (Parquet,

Snowflake)

1,2,3,Alice,Bob,Charlie,F,M,M,38,42,12

Consequence: JOINs are

slow on data warehouses.

© 2022 Snakedev 48

Poll

What's the best format to: a) Calculate average age? b) Find names of men?

1. Row-oriented best for both.

2. Column-oriented best for both.

3. Columns for average age, rows for names.

4. Rows for average age, columns for names.

© 2022 Snakedev 49

SQL Deception

SQL is a family of declarative programming languages with many

dialects and implementations.

Imperative v. Declarative languages

Imperative: You write and run program to calculate data.

Declarative: Describe data you want and let database engine find it

for you.

All SQL is not the same!

Underlying execution models differ significantly.

Performance varies dramatically for the same query on different

databases.

You must read and understand what it does in your database.

© 2022 Snakedev 50

Consistency Without Transactions

How do you present a correct & consistent view of data?

Batch pipelines are long and jobs can fail midway through.

Solution: Blue/Green deploys (borrowed from Web apps).

i. Current production point to Blue environment.

ii. Build Green environment.

iii. Verify Green environment.

iv. Point production to Green environment.

v. Next run uses Blue: flip back and forth.

CLONEs are lightweight copies for databases (Snowflake & BigQuery).

© 2022 Snakedev 51

Pragmatic Modelling

"Premature optimization is the root of all evil." - Donald Knuth

Model when needed.

Model for business or technical reasons.

Business

Logical entities that hang together.

Common foundation for reports, etc. across a company.

Metrics/KPIs.

Enable self serve by analytics engineers.

Make life easier for non-technical users.

Technical

Extract models from common patterns in queries.

Code reuse.

Improve performance, reduce costs.
© 2022 Snakedev 52

Snowflake BigQuery Redshift

Overall Amazing Good Poor

SQL

dialect
Modern Modern Ancient

Pricing
Usage-based, expensive,

and worth it.

Storage at Rest,

data read.
Cluster size.

Scaling Automatic N/A Difficult, slow

Workloads
Fully decoupled,

manageable
Decoupled Shared

Caching Data Queries
Limited, off by

default

© 2022 Snakedev 53

Snowflake BigQuery Redshift

Partitioning
Automatic,

excellent

Date time, Integer,

or Ingest time

Any column, Auto

available

Clustering
Automatic,

excellent
Multiple column

Single column, Auto

available

Ingest
Streaming

or batch
Streaming or batch

Batch, limited streaming

(slow commits)

External

data
Excellent Good, S3 supported Slow, clunky

© 2022 Snakedev 54

Snowflake BigQuery Redshift

Clones Yes Beta No

Indexes Yes Yes No

Time travel 90 days, configurable
7 days,

table only
No

Governance
Sophisticated: Row & column

permissions, RBAC
IAM-based Difficult

Administration Everything in SQL Some UI
UI

required

Thanks to Datacoves for the preceding comparisons.

© 2022 Snakedev 55

https://datacoves.com/

Good Old PostgreSQL

Great warehouse for small to medium data (< 1B records).

If you're not storing Web traffic or sensor data, this might be you.

Operationally simple, familiar and powerful SQL dialect.

Scale up with a really big single node.

Cstore_fdw plugin for columnar store tables

Itamar's Skepticism

"You should use 1 computer or 100 computers, and be skeptical of anything

in between."

Itamar Turner-Trauring

© 2022 Snakedev 56

https://citusdata.github.io/cstore_fdw/
https://pythonspeed.com/

Snakedev Workshops

Acquisition & Ingest

Data Warehouse Architecture

Operational Data Platforms

Orchestration with Airflow

Data Quality & Testing

Pipelines & Query Engines

Notebooks in Production

© 2022 Snakedev 57

Snakedev Services

Training

Consulting

Coaching

Strategic Advisor

Project Developer

Optimization

© 2022 Snakedev 58

https://snake.dev/services/

Book!

Principles of Data

Engineering

Published by Pearson

(2023 publication date)

© 2022 Snakedev 59

SNAKEDEV

All of Data Engineering in

Three Hours

Pete@Snake.dev

https://snake.dev

© 2022 Snakedev 60

mailto:pete@snake.dev
https://snake.dev/

